Mix-dimensional van der Waals heterostructures (vdWHs) have inspired worldwide interests and efforts in the field of advanced electronics and optoelectronics. The fundamental understanding of interfacial charge transfer is of vital importance for guiding the design of functional optoelectronic applications. In this work, type-II 0D-2D CdSe/ZnS quantum dots/MoS2 vdWHs are designed to study the light-triggered interfacial charge behaviors and enhanced optoelectronic performances. From spectral measurements in both steady and transient states, the phenomena of suppressed photoluminescence (PL) emissions, shifted Raman signals and changed PL lifetimes provide strong evidences of efficient charge transfer at the 0D-2D interface. A series of spectral evolutions of heterostructures with various QDs overlapping concentrations at different laser powers are analyzed in details, which clarifies the dynamic competition between exciton and trion during an efficient doping of 3.9×1013 cm-2. The enhanced photoresponses (1.57×104 A·W–1) and detectivities (2.86×1011 Jones) in 0D/2D phototransistors further demonstrate that the light-induced charge transfer is still a feasible way to optimize the performance of optoelectronic devices. These results are expected to inspire the basic understanding of interfacial physics at 0D/2D interfaces, and shed the light on promoting the development of mixed-dimensional optoelectronic devices in the near future.
Interface emission from heterojunction is a shortcoming for electroluminescent devices. A buffer layer introduced in the heterojunctional interfaces is a potential solution for the challenge. However, the dynamics for carrier tunneling to control the interface emission is still a mystery. Herein, the low-refractive HfO2 with a proper energy band configuration is employed as the buffer layer in achieving ZnO-microwire/HfO2/GaN heterojunctional light-emitting diodes (LEDs). The optically pumped lasing threshold and lifetime of the ZnO microwire are reduced with the introduced HfO2 layer. As a result, the interface emission is of blue-shift from visible wavelengths to 394 nm whereas the ultraviolet (UV) emission is enhanced. To regulate the interface recombination between electrons in the conduction band of ZnO and holes in the valence band of GaN, the tunneling electrons with higher conduction band are employed to produce a higher tunneling current through regulation of thin HfO2 film causing blue shift and interface emission enhancement. Our results provide a method to control the tunneling electrons in heterojunction for high-performance LEDs.
The development of high-level anti-counterfeiting techniques is of great significance in economics and security issues. However, intricate reading methods are required to obtain multi-level information stored in different colors, which greatly limits the application of anti-counterfeiting technology on solving real world problems. Herein, we realize multicolor information anti-counterfeiting under simply external stimulation by utilizing the functional groups and multiple emission centers of lanthanide metal organic framework (Ln-MOFs) to tune luminescence color. Water responsive multicolor luminescence represented by both the tunable color from red to blue within the visible region and high sensitive responsivity has been achieved, owing to the increased nonradiative decay pathways and enhanced Eu3+-to-ligand energy back transfer. Remarkably, information hidden in different colors needs to be read with a specific water content, which can be used as an encryption key to ensure the security of the information for high-level anti-counterfeiting.
We report a feasible method to realize tunable surface plasmon-polariton (SPP) resonance in organic light-emitting devices (OLEDs) by employing corrugated Ag-Al alloy electrodes. The excited SPP resonance induced by the periodic corrugations can be precisely tuned based on the composition ratios of the Ag-Al alloy electrodes. With an appropriate composition ratio of the corrugated alloy electrode, the photons trapped in SPP modes are recovered and extracted effectively. The 25% increasement in luminance and 21% enhancement in current efficiency have been achieved by using the corrugated Ag-Al alloy electrodes in OLEDs.
The realization of high-Q resonances in a silicon metasurface with various broken-symmetry blocks is reported. Theoretical analysis reveals that the sharp resonances in the metasurfaces originate from symmetry-protected bound in the continuum (BIC) and the magnetic dipole dominates these peculiar states. A smaller size of the defect in the broken-symmetry block gives rise to the resonance with a larger Q factor. Importantly, this relationship can be tuned by changing the structural parameter, resulting from the modulation of the topological configuration of BICs. Consequently, a Q factor of more than 3,000 can be easily achieved by optimizing dimensions of the nanostructure. At this sharp resonance, the intensity of the third harmonic generation signal in the patterned structure can be 368 times larger than that of the flat silicon film. The proposed strategy and underlying theory can open up new avenues to realize ultrasharp resonances, which may promote the development of the potential meta-devices for nonlinearity, lasing action, and sensing.
Photoacoustic imaging has many advantages in ophthalmic application including high-resolution, requirement of no exogenous contrast agent, and noninvasive acquisition of both morphologic and functional information. However, due to the limited depth of focus of the imaging method and large curvature of the eye, it remains a challenge to obtain high quality vascular image of entire anterior segment. Here, we proposed a new method to achieve high quality imaging of anterior segment. The new method applied a curvature imaging strategy based on only one time scanning, and hence is time efficient and more suitable for ophthalmic imaging compared to previously reported methods using similar strategy. A custom-built photoacoustic imaging system was adapted for ophthalmic application and a customized image processing method was developed to quantitatively analyze both morphologic and functional information in vasculature of the anterior segment. The results showed that the new method improved the image quality of anterior segment significantly compared to that of conventional high resolution photoacoustic imaging. More importantly, we applied the new method to study ophthalmic disease in an in vivo mouse model for the first time. The results verified the suitability and advantages of the new method for imaging the entire anterior segment and the numerous potentials of applying it in ophthalmic imaging in future.
Optical fiber sensor network has attracted considerable research interests for geoscience applications. However, the sensor capacity and ultra-low frequency noise limits the sensing performance for geoscience data acquisition. To achieve a high-resolution and lager sensing capacity, a strain sensor network is proposed based on phase-sensitive optical time domain reflectometer (φ-OTDR) technology and special packaged fiber with scatter enhanced points (SEPs) array. Specifically, an extra identical fiber with SEPs array which is free of strain is used as the reference fiber, for compensating the ultra-low frequency noise in the φ-OTDR system induced by laser source frequency shift and environment temperature change. Moreover, a hysteresis operator based least square support vector machine (LS-SVM) model is introduced to reduce the compensation residual error generated from the thermal hysteresis nonlinearity between the sensing fiber and reference fiber. In the experiment, the strain sensor network possesses a sensing capacity with 55 sensor elements. The phase bias drift with frequency below 0.1 Hz is effectively compensated by LS-SVM based hysteresis model, and the signal to noise ratio (SNR) of a strain vibration at 0.01 Hz greatly increases by 24 dB compared to that of the sensing fiber for direct compensation. The proposed strain sensor network proves a high dynamic resolution of 10.5 pε·Hz-1/2 above 10 Hz, and ultra-low frequency sensing resolution of 166 pε at 0.001 Hz. It is the first reported a large sensing capacity strain sensor network with sub-nε sensing resolution in mHz frequency range, to the best of our knowledge.
Optical cryptanalysis is essential to the further investigation of more secure optical cryptosystems. Learning-based attack of optical encryption eliminates the need for the retrieval of random phase keys of optical encryption systems but it is limited for practical applications since it requires a large set of plaintext-ciphertext pairs for the cryptosystem to be attacked. Here, we propose a two-step deep learning strategy for ciphertext-only attack (COA) on the classical double random phase encryption (DRPE). Specifically, we construct a virtual DRPE system to gather the training data. Besides, we divide the inverse problem in COA into two more specific inverse problems and employ two deep neural networks (DNNs) to respectively learn the removal of speckle noise in the autocorrelation domain and the de-correlation operation to retrieve the plaintext image. With these two trained DNNs at hand, we show that the plaintext can be predicted in real-time from an unknown ciphertext alone. The proposed learning-based COA method dispenses with not only the retrieval of random phase keys but also the invasive data acquisition of plaintext-ciphertext pairs in the DPRE system. Numerical simulations and optical experiments demonstrate the feasibility and effectiveness of the proposed learning-based COA method.
This paper presents design and simulation of a switchable radiative cooler that exploits phase transition in vanadium dioxide to turn on and off in response to temperature. The cooler consists of an emitter and a solar reflector separated by a spacer. The emitter and the reflector play a role of emitting energy in mid-infrared and blocking incoming solar energy in ultraviolet to near-infrared regime, respectively. Because of the phase transition of doped vanadium dioxide at room temperature, the emitter radiates its thermal energy only when the temperature is above the phase transition temperature. The feasibility of cooling is simulated using real outdoor conditions. We confirme that the switchable cooler can keep a desired temperature, despite change in environmental conditions.
Bioinspired superhydrophobic surfaces have attracted many industrial and academic interests in recent years. Inspired by unique superhydrophobicity and anisotropic friction properties of snake scale surfaces, this study explores the feasibility to produce a bionic superhydrophobic stainless steel surface via laser precision engineering, which allows the realization of directional superhydrophobicity and dynamic control of its water transportation. Dynamic mechanism of water sliding on hierarchical snake scale structures is studied, which is the key to reproduce artificially bioinspired multifunctional materials with great potentials to be used for water harvesting, droplet manipulation, pipeline transportation, and vehicle acceleration.
Here we developed a novel wavelength-switchable visible continuous-wave (CW) Pr3+:YLF laser around 670 nm. In single-wavelength laser operations, the maximum output powers of 2.60 W, 1.26 W, and 0.21 W, the maximum slope efficiencies of 34.7%, 27.3%, and 12.3% were achieved with good beam qualities (M2 3+:YLF laser operation at 670.4 nm. This is also the first demonstration of longer-wavelength peaks beyond 670 nm in the 3P1→3F3 transition of Pr3+:YLF. In multi-wavelength laser operations, the dual-wavelength lasings, including 670.1/674.8 nm, 670.1/679.1 nm, and 675.0/679.4 nm, were obtained by fine adjustment of one/two etalons within the cavity. Furthermore, the triple-wavelength lasings, e.g. 672.2/674.2/678.6 nm and 670.4/674.8/679.4 nm, were successfully demonstrated. Moreover, both the first-order vortex lasers (LG0+1 and LG0-1 modes) at 670.4 nm were obtained by off-axis pumping.
Digital holography has high potentials for future 3D imaging and display technology. We present a method for a dynamic full-color digital holographic 3D display on single digital micro-mirror device (DMD) with full-color, high-speed and high-fidelity characteristics. We combine the square regions of adjacent micro-mirrors into super-pixels that can modulate amplitude and phase independently. Gray images are achieved by amplitude modulation and precise positioning of each color is achieved by phase modulation. The proposed method realizes a full-color imaging based on the three primary colors and achieves measured structural similarity of more than 88% and color similarity of more than 98%, while retaining the high switch speed of 9 kHz, thus achieving dynamic full-color 3D display on charge-coupled device (CCD).
Self-accelerating beams have the unusual ability to remain diffraction-free while undergo the transverse shift during the free-space propagation. We theoretically identify that the transverse optical field distribution of 2D self-accelerating beam is determined by the selection of the transverse Cartesian coordinates, when the caustic method is utilized for its trajectory design. Based on the coordinate-rotation method, we experimentally demonstrate a scheme to flexibly manipulate the rotation of transverse optical field for 2D self-accelerating beams under the condition of a designated trajectory. With this scheme, the transverse optical field can be rotated within a range of 90 degrees, especially when the trajectory of 2D self-accelerating beams needs to be maintained for free-space photonic interconnection.
Ultrathin flat metalenses have emerged as promising alternatives to conventional diffractive lenses, offering new possibilities for myriads of miniaturization and interfacial applications. Graphene-based materials can achieve both phase and amplitude modulations simultaneously at a single position due to the modification of the complex refractive index and thickness by laser conversion from graphene oxide into graphene like materials. In this work, we develop graphene oxide metalenses to precisely control phase and amplitude modulations and to achieve a holistic and systematic lens design based on a graphene-based material system. We experimentally validate our strategies via demonstrations of two graphene oxide metalenses: one with an ultra-long (~16λ) optical needle, and the other with axial multifocal spots, at the wavelength of 632.8 nm with a 200 nm thin film. Our proposed graphene oxide metalenses unfold unprecedented opportunities for accurately designing graphene-based ultrathin integratable devices for broad applications.
We report on the fabrication of circular cladding waveguides with cross-section diameters of 60-120 μm in Pr:YAG crystal by applying femtosecond laser inscription. The fabricated waveguides present 2D guidance on the cross-section and fairly low propagation losses. Multiple high-order guiding modes are observed in waveguides with different diameters. Corresponding simulation results reveal the origin of a specific kind of guiding modes. Confocal micro-Raman (μ-Raman) experiments demonstrate the modification effects in femtosecond laser affected areas and ascertain the refractive index induced guiding mechanism. In addition, luminescence emission properties of Pr3+ ions at waveguide volume are well preserved during the femtosecond laser inscription process, which may result in a potential high-power visible waveguide laser.
Mid-infrared antennas (MIRAs) support highly-efficient optical resonance in the infrared, enabling multiple applications, such as surface-enhanced infrared absorption (SEIRA) spectroscopy and ultrasensitive mid-infrared detection. However, most MIRAs such as dipolar-antenna structures support only narrow-band dipolar-mode resonances while high-order modes are usually too weak to be observed, severely limiting other useful applications that broadband resonances make possible. In this study, we report a multiscale nanobridged rhombic antenna (NBRA) that supports two dominant resonances in the MIR, including a charge-transfer plasmon (CTP) band and a bridged dipolar plasmon (BDP) band which looks like a quadruple resonance. These assignments are evidenced by scattering-type scanning near-field optical microscopy (s-SNOM) imaging and electromagnetic simulations. The high-order mode only occurs with nanometer-sized bridge (nanobridge) linked to the one end of the rhombic arm which mainly acts as the inductance and the resistance by the circuit analysis. Moreover, the main hotspots associated with the two resonant bands are spatially superimposed, enabling boosting up the local field for both bands by multiscale coupling. With large field enhancements, multiband detection with high sensitivity to a monolayer of molecules is achieved when using SEIRA. Our work provides a new strategy possible to activate high-order modes for designing multiband MIRAs with both nanobridges and nanogaps for such MIR applications as multiband SEIRAs, IR detectors, and beam-shaping of quantum cascade lasers in the future.
The degree of coherence (DOC) function that characterizes the second-order correlations at any two points in a light field is shown to provide a new degree of freedom for carrying information. As a rule, the DOC varies along the beam propagation path, preventing from the efficient information recovery. In this paper, we report that when a partially coherent beam carrying a cross phase propagates in free space, in a paraxial optical system or in a turbulent medium, the modulus of the far-field (focal plane) DOC acquires the same value as it has in the source plane. This unique propagation feature is employed in a novel protocol for far-field imaging via the DOC, applicable to transmission in both free-space and turbulence. The advantages of the proposed approach are the confidentiality and resistance to turbulence, as well as the weaker requirement for the beam alignment accuracy. We demonstrate the feasibility and the robustness of the far-field imaging via the DOC in the turbulent media through both the experiment and the numerical simulations. Our findings have potential applications in optical imaging and remote sensing in natural environments, in the presence of optical turbulence.
The silver nanowires (Ag NWs) electrodes, which consist of incompact Ag nanoparticles (NPs) formed by multi-photon photoreduction, usually have poor conductivities. An effective strategy for enhancing conductivity of the Ag NWs electrodes is plasmon-enhanced nanosoldering (PLNS) by laser irradiation. Here, plasmon-enhanced photothermal effect is used to locally solder Ag NPs and then aggregates of these NPs grow into large irregular particles in PLNS process. Finite element method (FEM) simulations indicate that the soldering process is triggered by localized surface plasmon-induced electric field enhancement at “hot-spots”. The effectiveness of PLNS for enhancing conductivity depends on laser power density and irradiation time. By optimizing the conditions of PLNS, the electrical conductivity of Ag NWs is significantly enhanced and the conductivity σs is increased to 2.45×107 S/m, which is about 39% of the bulk Ag. This PLNS of Ag NWs provides an efficient and cost-effective technique to rapidly produce large-area metal nanowire electrodes and capacitors with high conductivity, excellent uniformity, and good flexibility.
Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures (LIPSSs), especially on glass surfaces. In this study, two-beam interference (TBI) of femtosecond lasers was used to produce large-area straight LIPSSs on fused silica using cylindrical lenses. Compared with those produced using a single circular or cylindrical lens, the LIPSSs produced by TBI are much straighter and more regular. Depending on the laser fluence and scanning velocity, LIPSSs with grating-like or spaced LIPSSs are produced on the fused silica surface. Their structural colors are blue, green, and red, and only green and red, respectively. Grating-like LIPSS patterns oriented in different directions are obtained and exhibit bright and vivid colors, indicating potential applications in surface coloring and anti-counterfeiting logos.
Encoding information in light polarization is of great importance in facilitating optical data storage (ODS) for information security and data storage capacity escalation. However, despite recent advances in nanophotonic techniques vastly enhancing the feasibility of applying polarization channels, the data fidelity in reconstructed bits has been constrained by severe crosstalks occurring between varied polarization angles during data recording and reading process, which gravely hindered the utilization of this technique in practice. In this paper, we demonstrate an ultra-low crosstalk polarization-encoding multilayer ODS technique for high-fidelity data recording and retrieving by utilizing a nanofibre-based nanocomposite film involving highly aligned gold nanorods (GNRs). With parallelizing the gold nanorods in the recording medium, the information carrier configuration minimizes miswriting and misreading possibilities for information input and output, respectively, compared with its randomly self-assembled counterparts. The enhanced data accuracy has significantly improved the bit recall fidelity that is quantified by a correlation coefficient higher than 0.99. It is anticipated that the demonstrated technique can facilitate the development of multiplexing ODS for a greener future.
The rapid development of information technology has fueled an ever-increasing demand for ultrafast and ultralow-energy-consumption computing. Existing computing instruments are pre-dominantly electronic processors, which use electrons as information carriers and possess von Neumann architecture featured by physical separation of storage and processing. The scaling of computing speed is limited not only by data transfer between memory and processing units, but also by RC delay associated with integrated circuits. Moreover, excessive heating due to Ohmic losses is becoming a severe bottleneck for both speed and power consumption scaling. Using photons as information carriers is a promising alternative. Owing to the weak third-order optical nonlinearity of conventional materials, building integrated photonic computing chips under traditional von Neumann architecture has been a challenge. Here, we report a new all-optical computing framework to realize ultrafast and ultralow-energy-consumption all-optical computing based on convolutional neural networks. The device is constructed from cascaded silicon Y-shaped waveguides with side-coupled silicon waveguide segments which we termed “weight modulators” to enable complete phase and amplitude control in each waveguide branch. The generic device concept can be used for equation solving, multifunctional logic operations as well as many other mathematical operations. Multiple computing functions including transcendental equation solvers, multifarious logic gate operators, and half-adders were experimentally demonstrated to validate the all-optical computing performances. The time-of-flight of light through the network structure corresponds to an ultrafast computing time of the order of several picoseconds with an ultralow energy consumption of dozens of femtojoules per bit. Our approach can be further expanded to fulfill other complex computing tasks based on non-von Neumann architectures and thus paves a new way for on-chip all-optical computing.
The aim of this study is to develop a reliable method to determine optical constants for 3D-nanonetwork Si thin films manufactured using a pulsed-laser ablation technique that can be applied to other materials synthesized by this technique. An analytical method was introduced to calculate optical constants from reflectance and transmittance spectra. Optical band gaps for this novel material and other important insights on the physical properties were derived from the optical constants. The existing optimization methods described in the literature were found to be complex and prone to errors while determining optical constants of opaque materials where only reflectance data is available. A supervised Deep Learning Algorithm was developed to accurately predict optical constants from the reflectance spectrum alone. The hybrid method introduced in this study was proved to be effective with an accuracy of 95%.
The imaging capability of conventional lenses is mainly limited by the diffraction of light, and the so-called superlens has been developed allowing the recovery of evanescent waves in the focal plane. However, the remarkable focusing behavior of the superlens is greatly confined in the near-field regime due to the exponential decay of evanescent waves. To tackle this issue, we design a waveguide metasurface-based superlens with an extraordinary quasi-far-field focusing capability beyond the diffraction limit in the present work. Specifically, we analyze the underlying physical mechanism and provide experimental verification of the proposed superlens. The metasurface superlens is formed by an array of gradient nanoslits perforated in a gold slab, and supports transverse-electric (TE) waveguide modes under linearly polarized illumination along the long axis of the slits. Numerical results illustrate that exciting such TE waveguide modes can modulate not only optical phase but also evanescent waves. Consequently, some high-spatial-frequency waves can contribute to the focusing of the superlens, leading to the quasi-far-field super-resolution focusing of light. Under 405 nm illumination and oil immersion, the fabricated superlens shows a focus spot of 98 nm (i.e. λ/4.13) at a focal distance of 1.49 μm (i.e. 3.68λ) using an oil immersion objective, breaking the diffraction limit of λ/2.38 in the quasi-far field regime. The developed metasurface optical superlens with such extraordinary capabilities promises exciting avenues to nanolithography and ultra-small optoelectronic devices.
A refractive index (RI) sensor based on perfluorinated plastic optical fiber (PF-POF) is introduced in this paper. The PF-POF as multi-mode fiber was side-polished (SP) to form a macro-bending single-mode-multimode-single-mode (SMS) structure. Both ends of the sensor were closely connected to single-mode quartz optical fiber (SMF). The spectral characteristics of the sensor are measured, analyzed and discussed. The results show that when the length of PF-POF is 8 cm, the macro-bending radius is 3 cm, and the SP-depth is 20 μm. The intensity sensitivity reaches -219.504 dBm/RIU in the range of RI = 1.330 ~ 1.356. A reference is provided for the application of PF-POF in RI sensor in the future. The sensor is featured with low-cost, good flexibility and high efficiency.
Q-switched lasers have occupied important roles in industrial applications such as laser marking, engraving, welding, and cutting due to their advantages in high pulse energy. Here, SnS2-based Q-switched lasers are implemented. Considering that SnS2 inherits the thickness sensitive optical characteristics of TMD, three kinds of SnS2 with different thickness are characterized in terms of nonlinearity and used to realize the Q-switched pulses under consistent implementation conditions for comparison tests. According to the results, the influence of thickness variation on the nonlinear performance of saturable absorber, such as modulation depth and absorption intensity, and the influence on the corresponding laser are analyzed. In addition, compared with other traditional saturable absorbers, the advantage of SnS2 in realizing ultrashort pulses is also noticed. Our work explores the thickness-dependent nonlinear optical properties of SnS2, and the rules found is of great reference value for the establishment of target lasers.
In this paper, we propose a new visual tracking method in light of salience information and deep learning. Salience detection is used to exploit features with salient information of the image. Complicated representations of image features can be gained by the function of every layer in convolution neural network (CNN). The characteristic of biology vision in attention-based salience is similar to the neuroscience features of convolution neural network. This motivates us to improve the representation ability of CNN with functions of salience detection. We adopt the fully-convolution networks (FCNs) to perform salience detection. We take parts of the network structure to perform salience extraction, which promotes the classification ability of the model. The network we propose shows great performance in tracking with the salient information. Compared with other excellent algorithms, our algorithm can track the target better in the open tracking datasets. We realize the 0.5592 accuracy on visual object tracking 2015 (VOT15) dataset. For unmanned aerial vehicle 123 (UAV123) dataset, the precision and success rate of our tracker is 0.710 and 0.429.
Current freeform illumination optical designs are mostly focused on producing prescribed irradiance distributions on planar targets. Here, we aim to design freeform optics that could generate a desired illumination on a curved target from a point source, which is still a challenge. We reduce the difficulties that arise from the curved target by involving its varying z-coordinates in the iterative wavefront tailoring (IWT) procedure. The new IWT-based method is developed under the stereographic coordinate system with a special mesh transformation of the source domain, which is suitable for light sources with light emissions in semi space such as LED sources. The first example demonstrates that a rectangular flat-top illumination can be generated on an undulating surface by a spherical-freeform lens for a Lambertian source. The second example shows that our method is also applicable for producing a non-uniform irradiance distribution in a circular region of the undulating surface.
Gas identification and concentration measurements are important for both understanding and monitoring a variety of phenomena from industrial processes to environmental change. Here a novel mid-IR plasmonic gas sensor with on-chip direct readout is proposed based on unity integration of narrowband spectral response, localized field enhancement and thermal detection. A systematic investigation consisting of both optical and thermal simulations for gas sensing is presented for the first time in three sensing modes including refractive index sensing, absorption sensing and spectroscopy, respectively. It is found that a detection limit less than 100 ppm for CO2 could be realized by a combination of surface plasmon resonance enhancement and metal-organic framework gas enrichment with an enhancement factor over 8000 in an ultracompact optical interaction length of only several microns. Moreover, on-chip spectroscopy is demonstrated with the compressive sensing algorithm via a narrowband plasmonic sensor array. An array of 80 such sensors with an average resonance linewidth of 10 nm reconstructs the CO2 molecular absorption spectrum with the estimated resolution of approximately 0.01 nm far beyond the state-of-the-art spectrometer. The novel device design and analytical method are expected to provide a promising technique for extensive applications of distributed or portable mid-IR gas sensor.
The generation of high-repetition rate (frep ≥ 10 GHz) ultra-broadband optical frequency combs (OFCs) at 1550 nm and 1310 nm is investigated by seeding two types of highly nonlinear fibers (HNLFs) with 10 GHz picosecond pulses at the pump wavelength of 1550 nm. When pumped near the zero dispersion wavelength (ZDW) in the normal dispersion region of a HNLF, 10 GHz flat-topped OFC with 43 nm bandwidth within 5 dB power variation is generated by self-phase modulation (SPM)-based OFC spectral broadening at 26.5 dBm pump power, and 291 fs pulse trains with 10 GHz repetition rate are obtained at 18 dBm pump power without complicated pulse shaping methods. Furthermore, when pumped in the abnormal dispersion region of a HNLF, OFCs with dispersive waves around 1310 nm are studied using a common HNLF and fluorotellurite fibers, which maintain the good coherence of the pump light at 1550 nm. At the same time, sufficient tunability of the generated dispersive waves is achieved when tuning the pump power or ZDW.
Near-infrared excited rare-earth (RE)-doped up-conversion (UC)-luminescent materials have attracted enormous attention because of their unique emission properties, such as narrow emission bands, long luminescence lifetimes, and multiple colors. However, current development of RE-doped luminescent material is hindered by weak and narrowband absorption problems and low photon-conversion quantum efficiencies. In addition to conventional approaches to enhance fluorescence intensity, controlling emission directivity to improve detection efficiency has become a promising approach to obtain higher luminescence brightnesses. In this paper, a self-suspended RE-doped UC luminescent waveguide is designed to realize directional emissions. Benefitting from the special morphology of the crown-like NaYF4:Yb3+/Er3+ microparticle, the points contact between the waveguide and substrate can be obtained to decrease energy loss. An attractive UC luminescent pattern accompanied by powerful and controllable directional emissions is observed, and the spatial emission angle and intensity distribution are explored and analyzed in detail by introducing Fourier imaging detection and simulation. This work provides a new method for achieving controllable directional fluorescence emissions and obtaining improved detection efficiency by narrowing emission directivity, which has potential applications in 3-dimensional displays and micro-optoelectronic devices, especially when fabricating self-fluorescence micron lasers.
We report the generation of high energy 2 μm picosecond pulses from a thulium-doped fiber master oscillator power amplifier system. The all-fiber configuration was realized by a flexible large-mode area photonic crystal fiber (LMA-PCF). The amplifier output is a linearly-polarized 1.5 ns, 100 kHz pulse train with a pulse energy of up to 250 μJ. Pulse compression was achieved with (2+2)-pass chirped volume Bragg grating (CVBG) to obtain a 2.8 ps pulse width with a total pulse energy of 46 μJ. The overall system compactness was enabled by the all-fiber amplifier design and the multi-pass CVBG-based compressor. The laser output was then used to demonstrate high-speed direct-writing capability on a temperature-sensitive biomaterial to change its topography (i.e. fabricate microchannels, foams and pores). The topographical modifications of biomaterials are known to influence cell behavior and fate which is potentially useful in many cell and tissue engineering applications.
We report the femtosecond (fs) laser fabrication of biomimetic omnidirectional iridescent metallic surfaces exhibiting efficient diffraction for practically any angle of light incidence. Such diffractive behavior is realized by means of multi-directional low-spatial-frequency, laser-induced periodic surface structures (LSFL) formed upon exploiting the cylindrical symmetry of a cylindrical vector (CV) fs field. We particularly demonstrate that the multi-directional gratings formed on stainless steel surface by a radially polarized fs beam, could mimic the omnidirectional structural coloration properties found in some natural species. Accordingly, the fabricated grating structures can spatially disperse the incident light into individual wavelength with high efficiency, exhibiting structural iridescence at all viewing angles. Analytical calculations using the grating equation reproduced the characteristic variation of the vivid colors observed as a function of incident angle. We envisage that our results will significantly contribute to the development of new photonic and light sensing devices.
Few-mode and multi-core fibers are proposed and demonstrated for contactless vital signs monitoring in this paper. In-line optical fiber interferometers using few-mode and multi-core fibers are designed and offset splicing is utilized for mode excitation. Extinction ratio and insertion loss are analyzed experimentally under different offset distances. The fabricated in-line interferometers are packaged under the mattress to realize contactless vital signs signals collection. By using filtering techniques, both respiration and heartbeat signals can be recovered successfully, and respiration as well as heartbeat ratio are obtained. Mode excitation and interference are theoretically analyzed in few-mode fiber while curvature sensing experiments using multi-core fiber interferometer are performed to verify its excellent performance on vital signs monitoring. The successful demonstration on contactless vital signs monitoring makes few-mode and multi-core fibers promising candidates for healthcare applications.
Mid-infrared (MIR) fiber pulsed lasers are of tremendous application interest in eye-safe LIDAR, spectroscopy, chemical detection and medicine. So far, these MIR lasers largely required bulk optical elements, complex free-space light alignment and large footprint, precluding compact all-fiber structure. Here, we proposed and demonstrated an all-fiberized structured gain-switched Ho3+-doped ZBLAN fiber laser operating around 2.9 μm. A home-made 1146 nm Raman fiber pulsed laser was utilized to pump highly concentrated single-cladding Ho3+-doped ZBLAN fiber with different lengths of 2 m or 0.25 m. A home-made MIR fiber mirror and a perpendicular-polished ZBLAN fiber end construct the all-fiberized MIR cavity. Stable gain-switched multiple states with a sub-pulse number tuned from 1 to 8 were observed. The effects of gain fiber length, pump power, pump repetition rate and output coupling ratio on performance of gain-switched pulses were further investigated in detail. The shortest pulse duration of 283 ns was attained with 10 kHz repetition rate. The pulsed laser, centered at 2.92 μm, had a maximum average output power of 54.2 mW and a slope efficiency of 10.12%. It is, to the best of our knowledge, the first time to demonstrate a mid-infrared gain-switched Ho3+:ZBLAN fiber laser with compact all-fiber structure.
We explored Q-switching mechanism for the newly proposed Tm/Ho composite laser via developing a hybrid resonator for separating the intra-cavity Tm laser modulated by the saturable absorber (SA). With a Cr:ZnSe SA, successful passively Q-switching process with the maximum average output power of 474 mW and the shortest pulse width of 145 ns were obtained at the pulse repetition frequency of 7.14 kHz, where dual wavelength oscillation in both 2090 nm and 2097 nm was observed. This work provides an effective way for a direct laser diode (LD) pumped Q-switched Ho laser, which is compact and accessible. Furthermore, the current SA could be replaced by the 2D materials with broadband saturable absorption such as topological insulators or transition-metal dichalcogenides for seeking novel PQS lasers.
We report here an optically pumped deep UV edge emitting laser with AlGaN multiple quantum wells (MQWs) active region grown on AlN substrate by low pressure organometallic vapor phase epitaxy (LP-OMVPE) in a high-temperature reactor. The 21 period Al0.53Ga0.47N/Al0.7Ga0.3N MQWs laser structure was optically pumped using 193 nm deep UV excimer laser source. A laser peak was achieved from the cleaved facets at 280.3 nm with linewidth of 0.08 nm at room temperature with threshold power density of 320 kW/cm2. The emission is completely TE polarized and the side mode suppression ratio (SMSR) is measured to be around 14 dB at 450 kW/cm2.
Dispersion control is crucial in optical systems, and chromatic aberration is an important factor affecting imaging quality in imaging systems. Due to the inherent property of materials, dispersion engineering is complex and needs to trade off other aberration in traditional ways. Although metasurface offers an effective method to overcome these limits and results in well-engineered dispersion, off-axis dispersion control is still a challenging topic. In this paper, we design a single-layer metalens which is capable of focusing at three wavelengths (473 nm, 532 nm, and 632 nm) with different incident angles (0°, -17° and 17°) into the same point. We also demonstrate that this metalens can provide an alternative for the bulky color synthetic prism in a 3-chips digital micromirror device (DMD) laser projection system. Through this approach, various off-axis dispersion controlling optical devices could be realized.
Electronic skin, a class of wearable electronic sensors that mimic the functionalities of human skin, has made remarkable success in applications including health monitoring, human-machine interaction and electronic-biological interfaces. While electronic skin continues to achieve higher sensitivity and faster response, its ultimate performance is fundamentally limited by the nature of low-frequency AC currents. Herein, highly sensitive skin-like wearable optical sensors are demonstrated by embedding glass micro/nanofibers (MNFs) in thin layers of polydimethylsiloxane (PDMS). Enabled by the transition from guided modes into radiation modes of the waveguiding MNFs upon external stimuli, the skin-like optical sensors show ultrahigh sensitivity (1870 kPa-1), low detection limit (7 mPa) and fast response (10 μs) for pressure sensing, significantly exceeding the performance metrics of state-of-the-art electronic skins. Electromagnetic interference (EMI)-free detection of high-frequency vibrations, wrist pulse and human voice are realized. Moreover, a five-sensor optical data glove and a 2×2-MNF tactile sensor are demonstrated. These initial results pave the way toward a new category of optical devices ranging from ultrasensitive wearable sensors to optical skins.
A true random coded photon counting Lidar system is proposed in this paper, in which a single photon detector acts as the true random sequence signal generator instead of the traditional function generator. Compared with the traditional pseudo-random coded method, the true random coded method not only improves the anti-crosstalk capability of the system, but more importantly, it effectively overcomes the adverse effect of the detector's dead time on the ranging performance. The experiment results show that the ranging performance of the true random coded method is obviously better than that of the pseudo-random coded method. As a result, a three-dimensional scanning imaging of a model car is completed by the true random coded method.
In the context of this work, a prototype hybrid photoacoustic (PA) and optical system for the on-line monitoring of laser cleaning procedures is presented. The developed apparatus has enabled the detection of MHz frequency range acoustic waves generated during the laser ablation process. The intrinsically generated PA signals combined with high resolution optical images provide the opportunity to follow the cleaning process accurately and in real time. Technical mock-ups have been used to demonstrate the potential of this novel technique with emphasis given to applications that refer to the restoration of Cultural Heritage (CH) surfaces. Towards this purpose, the real time monitoring of the laser assisted removal of unwanted encrustation from stonework has been achieved using IR and UV wavelengths. This novel approach has allowed for the precise determination of the critical number of laser pulses required for the elimination of the encrustation layer, while highlighting the dominant ablation mechanisms according to the irradiation wavelength. The promising results obtained using the prototype hybrid PA and optical system can open up new perspectives in the monitoring of laser cleaning interventions, promoting an improved restoration outcome.
Nonlinear high-harmonic generation in micro-resonators is a common technique used to extend the operating range of applications such as self-referencing systems and coherent communications in the visible region. However, the generated high-harmonic emissions are subject to a resonance shift with a change in temperature. We present a comprehensive study of the thermal behavior induced phase mismatch that shows this resonance shift can be compensated by a combination of the linear and nonlinear thermo-optics effects. Using this model, we predict and experimentally demonstrate visible third harmonic modes having temperature dependent wavelength shifts between -2.84 pm/℃ and 2.35 pm/℃ when pumped at the L-band. Besides providing a new way to achieve athermal operation, this also allows one to measure the thermal coefficients and Q-factor of the visible modes. Through steady state analysis, we have also identified the existence of stable athermal third harmonic generation and experimentally demonstrated orthogonally pumped visible third harmonic modes with a temperature dependent wavelength shift of 0.05 pm/℃ over a temperature range of 12 ℃. Our findings promise a configurable and active temperature dependent wavelength shift compensation scheme for highly efficient and precise visible emission generation for potential 2f-3f self-referencing in metrology, biological and chemical sensing applications.
Helicity-dependent ultrafast spin current generated by circularly polarized photons in topological materials holds the crux to many technological improvements, such as quantum communications, on-chip communication processing and storage. Here, we present the manipulation of helicity-dependent terahertz emission generated in a nodal line semimetal candidate Mg3Bi2 by using photon polarization states. The terahertz emission is mainly ascribed to the helicity-dependent photocurrent that is originated from circular photogalvanic effects, and the helicity-independent photocurrent that is attributed to linear photogalvanic effect. Our work will inspire more explorations into novel nodal line semimetals and open up new opportunities for developing ultrafast optoelectronics in the topological system.
The phase-sensitive optical time-domain reflectometry (φ-OTDR) is a good candidate for distributed dynamic strain sensing, due to its high sensitivity and fast measurement, which has already been widely used in intrusion monitoring, geophysical exploration, etc. For the frequency scanning based φ-OTDR, the phase change manifests itself as a shift of the intensity distribution. The correlation between the reference and measured spectra is employed for relative strain demodulation, which has imposed the continuous measurement for the absolute strain demodulation. Fortunately, the Brillouin optical time domain analysis (BOTDA) allows for the absolute strain demodulation with only one measurement. In this work, the combination of the φ-OTDR and BOTDA has been proposed and demonstrated by using the same set of frequency-scanning optical pulses, and the frequency-agile technique is also introduced for fast measurements. A 9.9 Hz vibration with a strain range of 500 nε has been measured under two different absolute strains (296.7με and 554.8 με) by integrating the Rayleigh and Brillouin information. The sub-micro strain vibration is demonstrated by the φ-OTDR signal with a high sensitivity of 6.8 nε, while the absolute strain is measured by the BOTDA signal with an accuracy of 5.4 με. The proposed sensor allows for dynamic absolute strain measurements with a high sensitivity, thus opening a door for new possibilities which are yet to be explored.
During the last decades the whispering gallery mode based sensors have become a prominent solution for label-free sensing of various physical and chemical parameters. At the same time, the widespread utilization of the approach is hindered by the restricted applicability of the known configurations for ambient variations quantification outside the laboratory conditions and their low affordability, where necessity on the spectrally-resolved data collection is among the main limiting factors. In this paper we demonstrate the first realization of an affordable whispering gallery mode sensor powered by deep learning and multi-resonator imaging at a fixed frequency. It has been shown that the approach enables refractive index unit (RIU) prediction with an absolute error at 3×10-6 level for dynamic range of the RIU variations from 0 to 2×10-3 with temporal resolution of several milliseconds and instrument-driven detection limit of 3×10-5. High sensing accuracy together with instrumental affordability and production simplicity places the reported detector among the most cost-effective realizations of the whispering gallery mode approach. The proposed solution is expected to have a great impact on the shift of the whole sensing paradigm away from the model-based and to the flexible self-learning solutions.
We integrally demonstrate 2 μm mode-locked pulses performances in all-fiber net anomalous dispersion cavity. Stable mode-locking operations with the center wavelength around 1950-1980 nm can be achieved by using the nonlinear polarization rotation structure and properly designing the dispersion management component. Conventional soliton is firstly obtained with a total anomalous dispersion cavity. Due to the contribution of commercial ultra-high numerical aperture fibers, net dispersion is reduced to -0.077 ps2. So that stretched pulse with 19.4 nm optical bandwidth is obtained and the de-chirped pulse-width can reach 312 fs using extra-cavity compression. Under pump power greater than 890 mW, stretched pulse can evolve into noise-like pulse with 41.3 nm bandwidth. The envelope and peak of such broadband pulse can be compressed with up to 2.2 ps and 145 fs, respectively. The single pulse energy of largely chirped stretched and noise-like pulse can reach 1.785 nJ and 1.53 nJ, respectively. Furthermore, extra-cavity compression can also contribute to a significant increase of peak power.
Current magnetic memories are based on writing and reading out the domains with opposite orientation of the magnetization vector. Alternatively, information can be encoded in regions with a different value of the saturation magnetization. The latter approach can be realized in principle with chemical order-disorder transitions in intermetallic alloys. Here, we study such transformations in a thin-film (35 nm) Fe60Al40alloy and demonstrate the formation of periodic magnetic nanostructures (PMNS) on its surface by direct laser interference patterning (DLIP). These PMNS are nonvolatile and detectable by magnetic force microscopy (MFM) at room temperature after DLIP with a single nanosecond pulse. We provide different arguments that the PMNS we observe originate from increasing magnetization in maxima of the interference pattern because of chemical disordering in the atomic lattice of the alloy at temperatures T higher than the critical temperature Tc for the order (B2)-disorder (A2) transition. Theoretically, our simulations of the temporal evolution of a partially ordered state at T > Tc reveal that the disordering rate is significant even below the melting threshold. Experimentally, we find that the PMNS are erasable with standard thermal annealing at T < Tc.
We investigated the plasmon-exciton interactions in an individual gold nanorod (GNR) with monolayer MoS2 at room temperature with the single-particle spectroscopy technique. To control the plasmon-exciton interaction, we tuned the local surface plasmon resonance of an individual GNR in-situ by employing the photothermal reshaping effect. The scattering spectra of the GNR-MoS2 hybrids exhibited two dips at the frequencies of the A and B excitons of monolayer MoS2, which were caused by the plasmon-induced resonance energy transfer effect. The resonance energy transfer rate increased when the surface plasmon resonance of the nanorod matched well with the exciton transition energy. Also, we demonstrated that the plasmon-enhanced fluorescence process dominated the photoluminescence of the GNR-MoS2 hybrid. These results provide a flexible way to control the plasmon-exciton interaction in an all-solid-state operating system at room temperature.
Inverse sensing is an important research direction to provide new perspectives for optical sensing. For inverse sensing, the primary challenge is that scattered photon has a complicated profile, which is hard to derive a general solution. Instead of a general solution, it is more feasible and practical to derive a solution based on a specific environment. With deep learning, we develop a multifunctional inverse sensing approach for a specific environment. This inverse sensing approach can reconstruct the information of scattered photons and characterize multiple optical parameters simultaneously. Its functionality can be upgraded dynamically after learning more data. It has wide measurement range and can characterize the optical signals behind obstructions. The high anti-noise performance, flexible implementation, and extremely high threshold to optical damage or saturation make it useful for a wide range of applications, including self-driving car, space technology, data security, biological characterization, and integrated photonics.
Despite the tremendous awareness of Rayleigh scattering characteristics and its considerable research interest for numerous fields, no report has been documented on the dynamic characteristics of spectrum evolution (SpE) and physical law for Rayleigh scattering from a micro perspective. Herein, the dynamic characteristics of the SpE of Rayleigh scattering in a one-dimensional waveguide (ODW) is investigated based on the quantum theory and a SpE-model of Rayleigh backscattering (RBS) source is established. By means of simulation, the evolution law which represents the dynamic process of the spectrum linewidth at a state of continuous scattering is revealed, which is consistent with our previous experimental observation. Moreover, an approximate theoretical prediction of the existing relationship between the spectrum linewidth of RBS source and the transmission length in ODW is proposed, which theoretically provides the feasibility of constructing functional devices suitable to ascertain laser linewidth compression. The designed experimental scheme can be implemented provided the assumptions are fulfilled. In addition, a theoretical model of the micro-cavity structure to realize the deep compression of laser linewidth is proposed.
Currently, laser-induced structural modifications in optical materials have been an active field of research. In this paper, we reported structural modifications in the bulk of sapphire due to picosecond (ps) laser filamentation and analyzed the ionization dynamics of the filamentation. Numerical simulations uncovered that the high-intensity ps laser pulses generate plasma through multi-photon and avalanche ionizations that leads to the creation of two distinct types of structural changes in the material. The experimental bulk modifications consist of a void like structures surrounded by cracks which are followed by a submicrometer filamentary track. By increasing laser energy, the length of the damage and filamentary track appeared to increase. In addition, the transverse diameter of the damage zone increased due to the electron plasma produced by avalanche ionizations, but no increase in the filamentary zone diameter was observed with increasing laser energy.
In this study, plasmonic nanostructures were examined to enhance the light harvesting of organic thin-film solar cells (OSCs) by multiple surface plasmon resonance (SPR) phenomena originating from the grating-coupled configuration with a Blu-ray Disc recordable (BD-R)-imprinted aluminum (Al) grating structure and the incorporation of a series of silver nanodisks (Ag NDs). The devices with such a configuration maximize the light utilization inside OSCs via light absorption, light scattering, and trapping via multiple surface plasmon resonances. Different types and sizes of metallic nanoparticles (NPs), i.e., gold nanoparticles (Au NPs), Ag nanospheres (Ag NSs), and Ag NDs, were used, which were blended separately in a PEDOT:PSS hole transport layer (HTL). The device structure comprised of grating-imprinted-Al/P3HT:PCBM/Ag ND:PEDOT:PSS/ITO. Results obtained from the J–V curves revealed that the power conversion efficiency (PCE) of grating-structured Al/P3HT:PCBM/PEDOT:PSS/ITO is 3.16%; this value is ~6% higher than that of a flat substrate. On the other hand, devices with flat Al and incorporated Au NPs, Ag NSs, or Ag NDs in the HTL exhibited PCEs ranging from 3.15% to 3.37%. Furthermore, OSCs with an Al grating substrate were developed by the incorporation of the Ag ND series into the PEDOT:PSS layer. Compared with that of a reference device, the PCEs of the devices increased to 3.32%–3.59% (11%–20% improvement), indicating that the light absorption enhancement at the active layer corresponds to the grating-coupled surface plasmon resonance and localized surface plasmon resonance excitations with strong near-field distributions penetrating into the active layer leading to higher efficiencies and subsequent better current generation.
Metasurface provides subwavelength structures for manipulating wavefronts of light. The benefits of subwavelength components offer a continuous modulation of amplitude, phase, and polarization, thus eliminating the production of higher-order images and improving the utilization of light intensity. Despite the rapid progress in this field, multiparameter control of light using single layer metasurface is rarely reported. In fact, multiparameter control of light helps to improve information storage capacity and image fidelity. With simultaneous manipulation of polarization and amplitude at each pixel, it is possible to encode two separate images into one metasurface and reconstruct them under proper conditions. In a proof of concept experiment, we demonstrate an independent display of two binary images at the same position with polarization de-multiplexing from a single metasurface. This unique technology of encoding two images through amplitude and polarization manipulation provides a new opportunity for various applications in, such as encryption, information storage, polarization holograms, optical communications and fundamental physics.
The mismatch between the AM1.5G spectrum and the photovoltaic (PV) cells absorption is one of the most limiting factors for PV performance. To overcome this constraint through the enhancement of solar energy harvesting, luminescent downshifting (LDS) layers are very promising to shape the incident sunlight and, thus, we report here the use of Tb3+- and Eu3+-doped organic-inorganic hybrid materials as LDS layers on Si PV cells. Electrical measurements on the PV cell, done before and after the deposition of the LDS layers, confirm the positive effect of the coatings on the cell''s performance in the UV spectral region. The maximum delivered power and the maximum absolute external quantum efficiency increased 14% and 27%, respectively. Moreover, a solar powered car race was organized in which the small vehicle containing the coated PV cells presented a relative increase of 9% in the velocity, when compared to that with the uncoated one.
Ultrathin corrugated metallic structures have been proved to support spoof surface plasmon polariton (SPP) modes on two-dimension (2D) planar microwave circuits. However, to provide stronger field confinement, larger width of strip is required to load deeper grooves, which is cumbersome in modern large-scale integrated circuits and chips. In this work, a new spoof SPP transmission line (TL) with zigzag grooves is proposed. This new structure can achieve stronger field confinement compared to conventional one with the same strip width. In other words, the proposed spoof SPP TL behaves equivalently to a conventional one with much larger size. Dispersion analysis theoretically indicates the negative correlation between the ability of field confinement and cutoff frequencies of spoof SPP TLs. Numerical simulations indicate that the cutoff frequency of the proposed TL is lower than the conventional one and can be easily modified with the fixed size. Furthermore, two samples of the new and conventional spoof SPP TLs are fabricated for experimental demonstration. Measured S-parameters and field distributions verify the ultra-strong ability of field confinement of the proposed spoof SPP TL. Hence, this novel spoof SPP structure with ultra-strong field confinement may find wide applications in microwave and terahertz engineering.
Manipulation of light-matter interaction is critical in modern physics, especially in the strong coupling regime, where the generated half-light, half-matter bosonic quasiparticles as polaritons are important for fundamental quantum science and applications of optoelectronics and nonlinear optics. Two-dimensional transition metal dichalcogenides (TMDs) are ideal platforms to investigate the strong coupling because of their huge exciton binding energy and large absorption coefficients. Further studies on strong exciton-plasmon coupling by combining TMDs with metallic nanostructures have generated broad interests in recent years. However, because of the huge plasmon radiative damping, the observation of strong coupling is significantly limited at room temperature. Here, we demonstrate that a large Rabi splitting (~300 meV) can be achieved at ambient conditions in the strong coupling regime by embedding Ag-WS2 heterostructure in an optical microcavity. The generated quasiparticle with part-plasmon, part-exciton and part-light is analyzed with Hopfield coefficients that are calculated by using three-coupled oscillator model. The resulted plasmon-exciton polaritonic hybrid states can efficiently enlarge the obtained Rabi splitting, which paves the way for the practical applications of polaritonic devices based on ultrathin materials.
One of the bottleneck issues for commercial scale-up of Ti additive manufacturing lies in high cost of raw material, i.e. the spherical Ti powder that is often made by gas atomization. In this study, we address this significant issue by way of powder modification & ball milling processing, which shows that it is possible to produce printable Ti powders based on ultra-low cost, originally unprintable hydrogenation-dehydrogenation (HDH) Ti powder. It is also presented that the as-printed Ti using the modified powder exhibits outstanding mechanical properties, showing a combination of excellent fracture strength (~895 MPa) and high ductility (~19.0% elongation).
We studied the near-field properties of localized surface plasmon resonances in finite linear gold nanochains using photoemission electron microscopy (PEEM). The localization of the electromagnetic field in the near-field region was mapped at high spatial resolution. By tuning the excitation laser wavelength, we can obtain the near-field spectra, from which the energy splitting between longitudinal (L) and transverse (T) plasmon modes can be revealed. In particular, the L-mode red shifts and the T-mode blue shifts with increasing chain length. The red shift of the L-mode is highly dependent on the gap distance. In contrast, the T-mode almost remains constant within the range of gap distance we investigated. This energy splitting between the L-mode and the T-mode of metallic chains is in agreement with previous far-field measurements, where it was explained by dipole-dipole near-field coupling. Here, we provide direct proof of this near-field plasmon coupling in nanochains via the above-described near-field measurements using PEEM. In addition, we explore the energy transport along the gold nanochains under excitation at oblique illumination via PEEM measurements together with numerical simulations.
High spatial frequency laser induced periodic surface structures (HSFLs) on silicon substrates are often developed on flat surfaces at low fluences near ablation threshold of 0.1 J/cm2, seldom on microstructures or microgrooves at relatively higher fluences above 1 J/cm2. This work aims to enrich the variety of HSFLs-containing hierarchical microstructures, by femtosecond laser (pulse duration: 457 fs, wavelength: 1045 nm, and repetition rate: 100 kHz) in liquids (water and acetone) at laser fluence of 1.7 J/cm2. The period of Si-HSFLs in the range of 110–200 nm is independent of the scanning speeds (0.1, 0.5, 1 and 2 mm/s), line intervals (5, 15 and 20 μm) of scanning lines and scanning directions (perpendicular or parallel to light polarization direction). It is interestingly found that besides normal HSFLs whose orientations are perpendicular to the direction of light polarization, both clockwise or anticlockwise randomly tilted HSFLs with a maximal deviation angle of 50° as compared to those of normal HSFLSs are found on the microstructures with height gradients. Raman spectra and SEM characterization jointly clarify that surface melting and nanocapillary waves play important roles in the formation of Si-HSFLs. The fact that no HSFLs are produced by laser ablation in air indicates that moderate melting facilitated with ultrafast liquid cooling is beneficial for the formation of HSFLs by LALs. On the basis of our findings and previous reports, a synergistic formation mechanism for HSFLs at high fluence was proposed and discussed, including thermal melting with the concomitance of ultrafast cooling in liquids, transformation of the molten layers into ripples and nanotips by surface plasmon polaritons (SPP) and second-harmonic generation (SHG), and modulation of Si-HSFLs direction by both nanocapillary waves and the localized electric field coming from the excited large Si particles.
Optical camouflage is a magical capability of animals as first noticed in 1794 by Erasmus Darwin in Zoonomia, but current biomimetic camouflage strategies cannot be readily applied in complex environments involving multispectral and in particular multi-polarization detection. Here we develop a plasmonic approach toward broadband infrared polarimetric crypsis, where the polarized thermal emission near the pseudo-Brewster angle is the main signal source and no existing polarizing camouflage technique has been discovered in nature. Based on all-metallic subwavelength structures, an electrodynamic resistance-reduction mechanism is proposed to avoid the significant polarization-dependent infrared absorption/radiation. It is also found that the structured metal surface presents giant extrinsic anisotropy regarding the phase shift between orthogonal polarization states, which helps to realize ultrahigh-efficiency and tunable polarization conversion in an unprecedented manner. Finally, we note that the catenary optical theory may provide a useful means to explain and predict these unusual performances.
Optical axial scanning is essential process to obtain 3D information of biological specimens. To realize optical axial scanning without moving, the tunable lens is a solution. However, the conventional tunable lenses usually induce non-uniform magnification and resolution issues. In this paper, we report a movable electrowetting optofluidic lens. Unlike the conventional tunable lens, our proposed optofluidic lens has two liquid-liquid (L-L) interfaces, which can move in the cell by an external voltage. The object distance and image distance are adjusted by shifting the L-L interface position. Therefore, the proposed lens can realize optical axial scanning with uniform magnification and resolution in microscopy. To prove the concept, we fabricate an optofluidic lens and use it in optical axial scanning. The scanning distance is more than 1 mm with uniform magnification and good imaging quality. Widespread application of such a new adaptive zoom lens is foreseeable.
In this paper, we report the exciton polaritons in both positive and negative detuning micro cavities based on InGaN multi-quantum wells (MQWs) and the first polariton lasing in InGaN/GaN MQWs at room temperature by utilizing a 4.5λ Fabry-Perot (F-P) cavity with double dielectric distributed Bragg reflectors (DBRs). Double thresholds corresponding respectively to polariton lasing and photonic lasing are observed along with half-width narrowing and peak blue-shifts. The threshold of polariton lasing is about half of the threshold of photonic lasing. Our results paved a substantial way for ultra-low threshold lasers and room temperature Bose-Einstein Condensate (BEC) in nitride semiconductors.
We use laser-scanning nonlinear imaging microscopy in atomically thin transition metal dichalcogenides (TMDs) to reveal information on the crystalline orientation distribution, within the 2D lattice. In particular, we perform polarization-resolved second-harmonic generation (PSHG) imaging in a stationary, raster-scanned chemical vapor deposition (CVD)-grown WS2 flake, in order to obtain with high precision a spatially resolved map of the orientation of its main crystallographic axis (armchair orientation). By fitting the experimental PSHG images of sub-micron resolution into a generalized nonlinear model, we are able to determine the armchair orientation for every pixel of the image of the 2D material, with further improved resolution. This pixel-wise mapping of the armchair orientation of 2D WS2 allows us to distinguish between different domains, reveal fine structure, and estimate the crystal orientation variability, which can be used as a unique crystal quality marker over large areas. The necessity and superiority of a polarization-resolved analysis over intensity-only measurements is experimentally demonstrated, while the advantages of PSHG over other techniques are analysed and discussed.
In order to overcome the existing disadvantages of offline laser shock peening detection methods, an online detection method based on acoustic wave signals energy is provided. During the laser shock peening, an acoustic emission sensor at a defined position is used to collect the acoustic wave signals that propagate in the air. The acoustic wave signal is sampled, stored, digitally filtered and analyzed by the online laser shock peening detection system. Then the system gets the acoustic wave signal energy to measure the quality of the laser shock peening by establishing the correspondence between the acoustic wave signal energy and the laser pulse energy. The surface residual stresses of the samples are measured by X-ray stress analysis instrument to verify the reliability. The results show that both the surface residual stress and acoustic wave signal energy are increased with the laser pulse energy, and their growth trends are consistent. Finally, the empirical formula between the surface residual stress and the acoustic wave signal energy is established by the cubic equation fitting, which will provide a theoretical basis for the real-time online detection of laser shock peening.
A novel spatial double-pulse laser ablation scheme is investigated to enhance the processing quality and efficiency for nanosecond laser ablation of silicon substrate. During the double-pulse laser ablation, two splitted laser beams simultaneously irradiate on silicon surface at a tunable gap. The ablation quality and efficiency are evaluated by both scanning electron microscope and laser scanning confocal microscope. As tuning the gap distance, the ablation can be significantly enhanced if the spatial interaction between the two splitted laser pulses is optimized. The underlying physical mechanism for the interacting spatial double-pulse enhancement effect is attributed to the redistribution of the integrated energy field, corresponding to the temperature field. This new method has great potential applications in laser micromachining of functional devices at higher processing quality and faster speed.
Broadband sound absorption at low frequency is notoriously difficult because the thickness of the absorber should be proportional to the working wavelength. Here we report an acoustic metasurface absorber following the recent theory developed for electromagnetics. We first show that there is an intrinsic analogy between the impedance description of sound and electromagnetic metasurfaces. Subsequently, we demonstrated that the classic Salisbury and Jaumann absorbers can be realized for acoustic applications with the aid of micro-perforated plates. Finally, the concept of coherent perfect absorption is introduced to achieve ultrathin and ultra-broadband sound absorbers. We anticipate that the approach proposed here can provide helpful guidance for the design of future acoustic and electromagnetic devices.
Graphene oxide (GO) ultrathin flat lenses have provided a new and viable solution to achieve high resolution, high efficiency, ultra-light weight, integratable and flexible optical systems. Current GO lenses are designed based on the Fresnel diffraction model, which uses a paraxial approximation for low numerical aperture (NA) focusing process. Herein we develop a lens design method based on the Rayleigh-Sommerfeld (RS) diffraction theory that is able to unambiguously determine the radii of each ring without the optimization process for the first time. More importantly, the RS design method is able to accurately design GO lenses with arbitrary NA and focal length. Our design is experimentally confirmed by fabricating high NA GO lenses with both short and long focal lengths. Compared with the conventional Fresnel design methods, the differences in ring positions and the resulted focal length are up to 13.9% and 9.1%, respectively. Our method can be further applied to design high performance flat lenses of arbitrary materials given the NA and focal length requirements, including metasurfaces or other two-dimensional materials.
In this work, an all-fiber-based mode converter for generating orbital angular momentum (OAM) beams is proposed and numerically investigated. Its structure is constructed by cascading a mode selective coupler (MSC) and an inner elliptical cladding fiber (IECF). OAM modes refer to a combination of two orthogonal LPlm modes with a phase difference of ±π/2. By adjusting the parameters and controlling the splicing angle of MSC and IECF appropriately, higher-order OAM modes with topological charges of l = ±1, ±2, ±3 can be obtained with the injection of the fundamental mode LP01, resulting in a mode-conversion efficiency of almost 100%. This achievement may pave the way towards the realization of a compact, all-fiber, and high-efficiency device for increasing the transmission capacity and spectral efficiency in optical communication systems with OAM mode multiplexing.
Due to the special characteristics of light in water, the information of the red channel is seriously attenuated in collected image. This causes other colors to dominate the image. This paper proposes an underwater image enhancement algorithm based on red channel weighted compensation and gamma correction model. Firstly, by analyzing the attenuation characteristics of RGB channels, the intensity and the edge information of red channel are compensated by weighting the attenuation coefficient ratio between different channels to correct the chromaticity. Then the gamma correction model is employed to stretch the intensity range to enhance the contrast which makes the image look clearer. The experimental results show that the proposed algorithm can correct the color cast effect and improve the contrast by nearly 2 times for the underwater images with too much red component attenuation.